Mr : Rekik Sabeur Révision 2

Exercice nº1:

Soit f la fonction définie sur]0, $+\infty[$ par $f(x)=(1-\ln x)^2$

http://ymaths.e-monsite.com/

1/ Etudier les variations de la fonction f.

2/ a. Soit g la restriction de g à l'intervalle [e , $+\infty$ [.

Montrer que g réalise une bijection de $\left[e\right.$, $+\infty\left[\right.$ sur $\left[0\right.$, $+\infty\left[\right.$

b. Montrer que pour tout x de $[0, +\infty[$, $g^{-1}(x) = e^{1+\sqrt{x}}$

3/ Tracer la courbe (C) de f et la courbe (C') de g^{-1} dans un même repère orthonormé (O, \vec{i} , \vec{j}).

4/ Pour tout $n\!\in IN^*$, on pose $I_{_{n}}=\int_{_{1}}^{^{e}}\!\left(1\!-\!\ln t\right)^{\!n}\,dt$

a/ Calculer I₁.

b/ En utilisant une intégration par parties, montrer que pour tout $n \in IN^*$ on a : $I_{n+1} = -1 + (n+1)I_n$

c/On désigne par A et B les points de (C) d'abscisses respectifs 1 et e.

Soit V le volume du solide de révolution engendré par la rotation de l'arc \widehat{AB} de la courbe (C) autour de l'axe (O, \vec{i}) . Calculer V.

Exercice n°2:

Soit la fonction f définie sur IR par $f(x) = x - e^{-x}$

On désigne par \mathscr{C} sa courbe représentative dans le plan rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) .

A/ 1/ Dresser le tableau de variation de f.

http://ymaths.e-monsite.com/

2/ Montrer que l'équation f (x) = 0 admet sur IR une unique solution α . Vérifier que $\frac{1}{2} < \alpha < 1$.

3/ Montrer que la droite Δ d'équation y = x est une asymptote à $\mathscr C$ au voisinage de $+\infty$.

4/ Tracer \mathscr{C} et Δ .

5/ a/ A l'aide d'une intégration par parties, calculer l'intégrale $I = \int_1^2 x \, e^{-x} \, dx$.

b/ Soit D la partie du plan limitée par \mathscr{C} , l'axe des abscisses et les droites d'équations x=1 et x=2. Calculer le volume \mathscr{V} du solide de révolution obtenu par rotation de la partie D autour de l'axe des abscisses.

B/ Soit la fonction g définie sur [0,1] par $g(x) = \frac{1+x}{1+e^x}$

1/ Montrer que l'équation f(x) = 0 est équivalente à l'équation g(x) = x

2/ Montrer que α est l'unique réel vérifiant $g(\alpha) = \alpha$.

3/ a/ Montrer que g'(x) = $\frac{-e^{x} f(x)}{(1+e^{x})^{2}}$

b/ Dresser le tableau de variations de g sur $[0, \alpha]$.

C/ Soit (u_n) la suite définie sur IN par $u_0 = 0$ et pour tout $n \in IN$, $u_{n+1} = g(u_n)$

1/ Montrer par récurrence que pour tout $n \in IN$, $0 \le u_{_{n}} \le \alpha$.

2/ Montrer par récurrence que la suite (u_n) est croissante. http://ymaths.e-monsite.com/

3/ En déduire que la suite (u_n) est convergente et déterminer sa limite.