
Lycée : 9 avril 1938	Devoir de contrôle n°1	Classe: 3 ^{ème} Sc Exp 1
♦♦♦♦	Le: 08 – 11 – 2017	Durée : 2 heures

Le sujet comporte deux pages

Exercice n°1: (4 points)

http://ymaths.e-monsite.com/

La figure ci-dessus est la représentation graphique d'une fonction f définie sur IR.

Utiliser cette figure pour répondre aux questions suivantes :

1/a/f est-elle continue en -2 ? Justifier votre réponse

b/ f est-elle continue en 1 ? Justifier votre réponse

2/ a/ Déterminer s'il existe un majorant de f sur IR.

b/ Déterminer s'il existe un minorant de f sur IR.

3/a/Déterminer l'ensemble des solutions de l'équation f (x) = 0 .

b/ Déterminer l'ensemble des solutions de l'inéquation f(x) > 0.

4/ Déterminer les images par f des intervalles : [-1, 2] et $[1, +\infty[$.

Exercice n°2: (4 points)

Soit g la fonction définie sur IR par g(x) =
$$\begin{cases} \frac{x}{x-2} & \text{si } x \in]-\infty, 1[\\ -x^2 + 6x - 6 & \text{si } x \in [1, +\infty[$$

1/ Justifier que g est continue sur l'intervalle] $-\infty$,1[

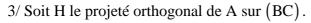
2/ Justifier que g est continue sur l'intervalle $[1,+\infty[$

3/ a/ Vérifier que pour tout $x \in [1, +\infty[$ on $a : g(x) = -(x-3)^2 + 3$

b/ Construire la courbe représentative de g dans le plan muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$.

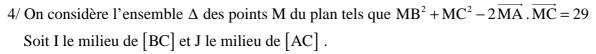
4/ Vérifier graphiquement que g est continue sur IR.

Soit h la fonction définie par $h(x) = \frac{2 - x + \sqrt{x - 1}}{x - 1}$


- 1/ Déterminer l'ensemble de définition D_h de h.
- 2/ Justifier que h est continue sur son ensemble de définition.
- 3/a/Montrer que l'équation h(x) = 0 admet une solution α dans l'intervalle [3,4].
 - b/ Donner un encadrement à $10^{\text{--}1}$ prés de $\alpha\,.$

Exercice n°4: (9 points)

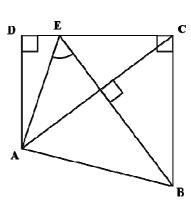
ABCD un trapèze rectangle en C et D tel que


AD = 3; DC = CB = 4 et E est un point défini par
$$\overrightarrow{DE} = \frac{1}{4}\overrightarrow{DC}$$
.

- 1/ Montrer que $(\overrightarrow{ED} + \overrightarrow{DA}) \cdot (\overrightarrow{EC} + \overrightarrow{CB}) = \overrightarrow{ED} \cdot \overrightarrow{EC} + \overrightarrow{DA} \cdot \overrightarrow{CB}$
- $2/a/Calculer \overrightarrow{ED}.\overrightarrow{EC} et \overrightarrow{DA}.\overrightarrow{CB}$.
 - b/ En déduire que \overrightarrow{EA} . $\overrightarrow{EB} = 9$.
 - c/ Calculer EA et EB puis cos(AEB).
 - d/Montrer que AB = $\sqrt{17}$.

a/Calculer
$$\overrightarrow{CA}$$
. \overrightarrow{CB} et \overrightarrow{CA} . \overrightarrow{CE} .

b/ En déduire que les droites (CA) et (BE) sont perpendiculaires.



a/Montrer que
$$BJ^2 = \frac{41}{4}$$
 puis vérifier que $J \in \Delta$.

b/ Montrer que pour tout M du plan on a :
$$MB^2 + MC^2 - 2 \overrightarrow{MA} \cdot \overrightarrow{MC} = 2(MI^2 - MJ^2) + \frac{41}{2}$$

c/Montrer que
$$MI^2 - MJ^2 = 2 \overrightarrow{MJ} \cdot \overrightarrow{JI} + \frac{17}{4}$$

d/ Déterminer l'ensemble Δ .

http://ymaths.e-monsite.com/