Lycée 9 Avril 1938		Prof : Rekik Sabeur
Devoir de contrôle n°1 (2 Heures)		
Année scolaire : 2018 - 2019	Le: 14/11/20018	Classe: 4 ^{ième} Sc 2

Le sujet comporte deux pages

Exercice nº1: (8 points)

Soit f la fonction définie sur IR* par f(x) =
$$\begin{cases} x \sin\left(\frac{\pi}{2x}\right) & \text{si } x \in]-\infty,1] \setminus \{0\} \\ \sqrt{x^2 + 8} - x - 1 & \text{si } x \in]1, +\infty[\end{cases}$$

1/ Montrer que f est continue en 1.

http://ymaths.e-monsite.com/

2/ a/ Déterminer
$$\lim_{x\to +\infty} f(x)$$
 et $\lim_{x\to +\infty} f(x-\cos)$.

b/ Montrer que
$$\lim_{x \to -\infty} f(x) = \frac{\pi}{2}$$
 puis déterminer $\lim_{x \to 1^+} f\left(\frac{1}{1-x}\right)$.

$$3/$$
 a/ Vérifier que pour tout $x \in]-\infty,1] \setminus \{0\}$, on a $|f(x)| \le |x|$

b/ En déduire que f est prolongeable par continuité en 0.

4/ a/ Vérifier que pour tout
$$x > 1$$
, $f(x) = \frac{8}{\sqrt{x^2 + 8} + x} - 1$

b/ Déduire que f est strictement décroissante sur $]1,+\infty[$ et déterminer f $(]1,+\infty[$).

5/ Soit la fonction g définie sur]1,+
$$\infty$$
[par g(x) = tan $\left(\frac{\pi}{2}f(x)\right)$.

a/ Montrer que g est continue sur
$$]1,+\infty[$$
.

b/ Montrer que l'équation
$$g(x)=1$$
 admet une unique solution α dans $\left[\frac{3}{2},2\right[$.

c/ Montrer que
$$\alpha = \frac{23}{12}$$
.

Exercice n°2: (6 points)

1/a Résoudre dans \mathbb{C} l'équation (E): $z^2 + 2z + 4 = 0$

On désigne par z_1 et z_2 les solutions de (E), z_1 étant celle dont la partie imaginaire est positive.

b/ Calculer le module et un argument de $\,z_{_1}\,.$

2/ Soit le nombre complexe U définie par :
$$U.z_1 = 4\sqrt{2} \left[\cos\left(\frac{11\pi}{12}\right) + i\sin\left(\frac{11\pi}{12}\right) \right]$$

a/ Exprimer U sous forme exponentielle.

b/ Vérifier que
$$U = 2(1+i)$$
.

c/ En déduire les valeurs exactes de
$$\cos\left(\frac{11\pi}{12}\right)$$
 et $\sin\left(\frac{11\pi}{12}\right)$

3/ Déterminer les racines cubiques du nombre complexe U.

http://ymaths.e-monsite.com/

Exercice n°3: (6 points)

On considère dans \mathbb{C} , l'équation $(E_{\theta}): z^2 - (1 + 2\cos\theta)z + 1 + \cos\theta - i\sin\theta = 0$ avec $\theta \in]0, \pi[$.

- $1/ a/ Développer (1 + 2i sin \theta)^2$.
 - b/ Résoudre dans \mathbb{C} , l'équation (E_{θ}) .
- 2/ Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points

A et B d'affixes respectives $z_A = e^{-i\theta}$ et $z_B = 1 + e^{i\theta}$

- a/ Ecrire z_B sous forme exponentielle.
- b/ Déterminer l'ensemble des points B lorsque θ varie dans $]0,\pi[$.
- c/ Déterminer l'affixe du point C pour que OACB soit un parallélogramme.
- d/ Déterminer la valeur de θ pour que OACB soit un rectangle.

http://ymaths.e-monsite.com/

BON TRAVAIL