Lycée Aguereb 2	Classe : 3 ^{ième} Sc exp	Prof: Mr Rekik Sabeur	
Devoir de contrôle n°2 (Mathématiques)		Date: 10 / 02 / 2014	Durée : 2 H

Exercice n°1: (2 pts)

Pour chaque question, une seule des trois propositions est exacte. L'élève indiquera sur la copie le numéro de la question et la lettre correspondant à la réponse choisie.

Aucune justification n'est demandée.

http://ymaths.e-monsite.com/

$$1/\lim_{x\to 2^+}\frac{1}{\sqrt{x-2}}=$$

$$a/+\infty$$

$$2/\lim_{x \to +\infty} \frac{-2 + 3x + x^2}{1 + 3x + x^2} =$$

$$a/-2$$

$$b/ -1$$

 $3/\frac{\pi}{2}$ est une mesure de $(\overrightarrow{AB}, \overrightarrow{AC})$ alors $(-2\overrightarrow{AB}, 3\overrightarrow{CA}) \equiv$

a/
$$\frac{\pi}{2}[2\pi]$$

$$b/ -\frac{\pi}{2}[2\pi]$$

c/
$$\frac{3\pi}{2}[2\pi]$$

4/ Soient \vec{u} et \vec{v} deux vecteurs non nuls du plan orienté dans le sens direct tels que

$$(\vec{u}, \vec{v}) \equiv \frac{2010\pi}{3} [2\pi]$$
. Les deux vecteurs \vec{u} et \vec{v} sont :

a/ Colinéaires de sens contraire

b/ Colinéaires de même sens

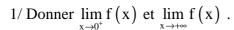
c/ Orthogonaux

Exercice n°2 (6 pts)

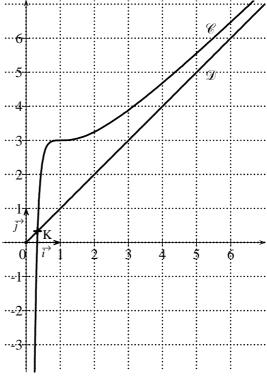
On considère une fonction f définie sur $]0,+\infty[$ dont on connaît sa courbe représentative $\mathscr C$ ci-contre dans un repère orthonormé $(O,\vec i,\vec j)$.

La droite ${\mathcal D}$ a également été représentée.

A/ On suppose que la droite $\mathscr D$ et l'axe des ordonnées sont des asymptotes à la courbe $\mathscr C$. En utilisant le graphique :



- 2/ Quelles sont les équations des asymptotes à la courbe $\mathscr C$?
- 3/ Le point $K\left(\frac{1}{3},\frac{1}{3}\right)$ est le point commun à $\mathscr C$ et à $\mathscr D$. D'après la représentation graphique, quelle est en fonction de x, la position de la courbe par rapport à la droite $\mathscr D$?



B/ La fonction f est définie sur $]0,+\infty[$ par $f(x)=x+\frac{3}{x}-\frac{1}{x^2}$

1/ a/ Calculer $\lim_{x\to +\infty} f(x)$, puis $\lim_{x\to +\infty} \left[f(x) - x \right]$ et justifier que la droite $\mathscr D$ est asymptote à $\mathscr C$. b/ Retrouver les résultats de la question A/ 3/.

2/ a/ Vérifier que pour tout $x \in \left]0,+\infty\right[$, $f(x) = \frac{x^3 + 3x - 1}{x^2}$

b/ Calculer $\lim_{x\to 0^+} f\left(x\right)$ et justifier le fait que l'axe des ordonnées est asymptote à $\mathscr C$.

Exercice n°3: (5 pts)

http://ymaths.e-monsite.com/

Soit la fonction f définie par f (x) = $\sqrt{x^2 + 3} - 3x$

On désigne par C_f la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

1/ Déterminer l'ensemble de définition de f.

$$2/$$
 Calculer $\lim_{x\to\infty} f(x)$.

3/ a/ Monter que pour tout
$$x \in \left]0, +\infty\right[$$
 on a : $f\left(x\right) = x\left(\sqrt{1 + \frac{3}{x^2}} - 3\right)$

b/ En déduire
$$\lim_{x\to +\infty} f(x)$$

4/ a/ Monter que pour tout
$$x \in \left]0,+\infty\right[$$
 on a : $f(x)+2x = \frac{3}{x+\sqrt{x^2+3}}$

b/ En déduire $\lim_{x \to +\infty} \left[f(x) + 2x \right]$. Interpréter graphiquement le résultat obtenu.

Exercice n°4: (7 pts)

Soient A et B deux points du plan orienté tels que AB = 3 cm. On considère :

✓ Le point C tel que
$$(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{9\pi}{4} [2\pi]$$

✓ Le point D tel que
$$(\overrightarrow{AC}, \overrightarrow{AD}) = \frac{5\pi}{12} [2\pi]$$

✓ Le point E tel que
$$(\overrightarrow{AB}, \overrightarrow{AE}) = \frac{53\pi}{3} [2\pi]$$

1/ Donner les mesures principales des angles orientés $(\overrightarrow{AB}, \overrightarrow{AC})$ et $(\overrightarrow{AB}, \overrightarrow{AE})$.

2/ Construire les points C, D et E avec AC = AD = 4 cm et AE = 3 cm.

- 3/ Donner une mesure de l'angle orienté $(\overrightarrow{AC}, \overrightarrow{AE})$
- 4/ Montrer que les points A, D et E sont alignés.

$$5/-\frac{59\pi}{4}$$
 est-elle une mesure de l'angle orienté $(\overrightarrow{AB},\overrightarrow{AC})$

6/ Déterminer et construire l'ensemble (Γ) des points M du plan tels que $(\overrightarrow{MA}, \overrightarrow{MB}) \equiv \frac{\pi}{6} [2\pi]$

BON TRAVAIL