Lycée: 7 / 11 / Méthouia	Devoir de contrôle n°2	Classes: 3 ^{ème} Math 1 et 2
Prof : Mr S. Mostfa Mr R.Saber	Le: 02 / 02 / 2008	Durée : 2 heures

Exercice n°1:

Soit f la fonction définie sur IR \{2} par : $f(x) = \frac{x^2 + 2x + 1}{2 - x}$

On désigne par \mathscr{C}_f sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1) a) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
 - b) Calculer les limites de f à droite et à gauche en 2.
- 2) a) Justifier que f est dérivable sur IR \{2\} puis montrer que f '(x) = $\frac{-x^2 + 4x + 5}{(2-x)^2}$
 - b) Dresser le tableau de variation de f. Préciser la nature des extrema.
- 3) Donner l'équation de la tangente T à \mathscr{C}_f au point d'abscisse 3.
- 4) Soit M_0 le point de \mathscr{C}_f d'abscisse X_0 .

Déterminer x_0 pour que la droite D: y = 8x - 4 soit tangente à \mathcal{C}_f

Exercice n°2:

1) Soit la fonction f définie sur IR par : $f(x) = ax^3 + bx + c$

On désigne par \mathscr{C}_f sa courbe représentative dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$.

Déterminer les réels a, b et c pour que f admet un extremum en -1 égal à 4 et la courbe \mathscr{C}_f admet au point d'abscisse 0 une tangente parallèle à la droite d'équation y=-3x.

2) Dans la suite de l'exercice, on donne a = 1, b = -3 et c = 2 $(f(x) = x^3 - 3x + 2)$

Soit g la fonction définie sur IR par : $\begin{cases} g(x) = f(x) & \text{si } x \leq 1 \\ g(x) = \frac{1 - x^2}{x} & \text{si } x > 1 \end{cases}$

- a) Montrer que g est continue en 1.
- b) Vérifier que pour tout réel x ; $x^3 3x + 2 = (x 1)(x^2 + x 2)$

Etudier la dérivabilité de g en 1. Interpréter graphiquement le résultat obtenu.

- c) Déterminer les intervalles sur lesquels g est dérivable et calculer g'(x).
- d) Dresser le tableau de variation de g. En déduire que pour tout réel x ; $g(x) \le 4$

Exercice n°3:

Soit ABC un triangle isocèle de sommet principal B tel que $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{6} [2\pi]$.

On pose $E = S_{(AC)}(B)$ et $D = S_B(E)$

- 1) Soit R la rotation de centre A et d'angle $\frac{\pi}{3}$
 - a) Déterminer R(E).
 - b) Montrer que EC = BD
 - c) En déduire que R(C) = D.
- 2) Soit R' la rotation qui transforme A en C et D en A.
 - a) Déterminer l'angle de R'.
 - b) Montrer que B est le centre de R'.
 - c) Déterminer R'(C).
 - d) Soit Δ la droite perpendiculaire à (AC) en A. On pose $\{I\} = \Delta \cap (DC)$ et $\{J\} = (AD) \cap (EC)$ Déterminer les images des droites Δ et (DC) par R' puis déduire que R '(I) = J

