Lycée 9 Avril 1938		Prof : Rekik Sabeur
Devoir de contrôle n°3 (2 Heures)		
Année scolaire : 2018 - 2019	Le: 02 / O5 / 20019	Classe: 4 ^{ième} Sc 2

Le sujet comporte deux pages

Exercice n°1: (3 points)

http://ymaths.e-monsite.com/

Indiquer la réponse correcte :

1/La solution f de l'équation différentielle y' + 2y = 6 telle que f(0) = 1 est définie sur IR par :

$$a/f(x) = -2e^{-2x} + 3$$

$$b/ f(x) = -2e^{2x} + 3$$

$$c/f(x) = -2e^{-2x} - 3$$

2/ La solution de l'équation différentielle $y'' + 4\pi^2 y = 0$ telle que f(1) = 1 et $f'(1) = 2\pi$ est définie sur IR par :

$$a/f(x) = \sin(2\pi x) + \cos(2\pi x) b/f(x) = \sin(4\pi x) + \cos(4\pi x) c/f(x) = \sin(2\pi x) - \cos(2\pi x)$$
.

3/ Si A et B deux évènements indépendants tel que p(A) = 0.3 et p(B) = 0.7 alors :

$$a/p(A \cup B) = 1$$

b/
$$p(A \cup B) = 0.79$$

$$c/p(A/B) = 0.7$$

c/m = -1

4/ Une variable aléatoire X prend pour valeurs (-2), 2 et m $(m \in IR)$.

Si
$$p(-2) = \frac{5}{12}$$
, $p(2) = \frac{1}{4}$, $p(m) = \frac{1}{3}$ et $E(X) = 0$ alors:

Soit f la fonction définie sur IR par f (x) = $\frac{3}{1 + e^{3x}}$

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

1/ a/ Déterminer la limite de f en $+\infty$ et en $-\infty$. Interpréter graphiquement les résultats obtenus

b/ Dresser le tableau de variation de f.

2/ a/ Montrer que $A\left(0,\frac{3}{2}\right)$ est un point d'inflexion de (C).

b/Donner une équation de la tangente T à (C) au point A.

c/ Tracer T et (C).

3/ a/ Montrer que f admet une fonction réciproque f $^{-1}$ définie sur un intervalle J que l'on précisera.

b/ Tracer (C') la courbe de f^{-1} sur le même repère que (C) .

c/ Expliciter $f^{-1}(x)$ pour tout $x \in J$.

4/ Soit λ un réel strictement positif et $F(\lambda) = \int_0^{\lambda} f(t) dt$.

a/ Interpréter géométriquement $F(\lambda)$.

b/ Vérifier que pour tout réel x : $f(x) = \frac{3e^{-3x}}{e^{-3x} + 1}$ et en déduire que $F(\lambda) = ln\left(\frac{2}{1 + e^{-3\lambda}}\right)$

c/ Calculer la limite de $F(\lambda)$ en $+ \infty$.

http://ymaths.e-monsite.com/

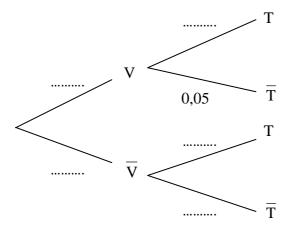
Devoir de contrôle n°3 Page 1/2

Exercice n°3: (4 points)

On considère l'équation différentielle (E): $y' - y = (x \ln x)e^x$ pour tout $x \in [0, +\infty[$

- 1/Résoudre l'équation différentielle (E'): y' y = 0
- 2/ Soit g une fonction définie sur $]0,+\infty[$ et h la fonction définie sur $]0,+\infty[$ par h(x)=g(x) e^x a/ Déterminer g'(x) pour que h soit une solution de (E).
 - b/ Déterminer alors g(x) tel que g(1) = 0.
- 3/a/Montrer que f est une solution de (E) si et seulement si f h est une solution de (E').
 - b/ En déduire alors les solutions de l'équation (E).

Exercice n • 4: (5 points)


Pour prévenir l'extension d'une épidémie virale on décide de soumettre la population à un test. D'une façon générale le résultat d'un test est positif pour les porteurs de virus, négatif pour les personnes qui ne sont pas atteintes, mais il y a des exceptions.

On choisit un individu X au hasard et on considère les événements suivants :

- ❖ V : « X est porteur du virus »
- \overline{V} : « X n'est pas porteur du virus »
- ❖ T : « Le test appliqué à X est positif »
- \bullet \overline{T} : « Le test appliqué à X est négatif »

On admet que:

- ✓ Il y a 10 % de la population qui est porteuse du virus.
- ✓ Dans 5 % des cas le test appliqué à un individu qui est porteur du virus est négatif
- ✓ Dans 3 % des cas le test appliqué à un individu qui n'est pas porteur du virus est positif 1/ Recopier et compléter l'arbre suivant :

- 2/ a/ Calculer les probabilités des événements :
 - « X est porteur du virus et le test appliqué à X est positif »
 - « X n'est pas porteur du virus et le test appliqué à X est positif »
 - b/ En déduire la probabilité de T puis celle de \overline{T} .
- 3/ a/ Calculer la probabilité pour que X soit porteur du virus **et** que le test soit négatif.
 - b/ En déduire la probabilité pour que X soit porteur du virus **sachant** que le test appliqué à X est négatif.