Lycée : 9 avril 1938	Devoir de synthèse n°1	Classes: 3 ^{ème} Sc Exp 1+2
♦♦♦♦	Le: 24 – 01 – 2018	Durée : 2 heures

Le sujet comporte trois pages

Exercice nº1: (3,5 points)

Dans l'annexe ci-jointe (Figure 1), on a représenté dans un repère orthonormé (O, \vec{i}, \vec{j}) la courbe

(C) d'une fonction f.

http://ymaths.e-monsite.com/

- \checkmark (C) admet trois asymptotes D, \triangle et \triangle' .
- ✓ T est la tangente à (C) en A(2, 2).
- 1/ Par lecture graphique et en utilisant les renseignements fournis :
 - a/ Déterminer D_f l'ensemble de définition de f.

$$\text{b/ Déterminer } \lim_{x \to -\infty} f\left(x\right) \text{ , } \lim_{x \to +\infty} f\left(x\right) \text{ , } \lim_{x \to \left(-1\right)^{+}} f\left(x\right) \text{ , } \lim_{x \to \left(-1\right)^{-}} f\left(x\right)$$

c/ Ecrire les équations des asymptotes.

$$2/$$
 a/ Déterminer $f^{\, \prime}(2)$, $\,\, f^{\, \prime}(3)$, $\, f^{\, \prime}_{_{d}}(-1)$ et $f^{\, \prime}_{_{g}}(-1)$

b/ Ecrire une équation de T.

Exercice n°2: (7,5 points)

A/ Soit f la fonction définie par f (x) =
$$\frac{1-x^2}{x^2+4x+3}$$

- 1/ Déterminer D_f l'ensemble de définition de f.
- 2/ Montrer que f est prolongeable par continuité en -1.
- 3/ Calculer $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$. Interpréter graphiquement les résultats obtenus.
- 4/ Etudier $\lim_{x \to -3} f(x)$ puis interpréter graphiquement les résultats obtenus.

B/ Soit g la fonction définie par
$$g(x) = \begin{cases} f(x) & \text{si } x < -1 \\ \sqrt{x^2 + 3} + x & \text{si } x \ge -1 \end{cases}$$

1/ Vérifier que $D_g = IR \setminus \{-3\}$.

http://ymaths.e-monsite.com/

2/ Calculer
$$\lim_{x \to +\infty} g(x)$$
 et $\lim_{x \to +\infty} \frac{g(x)}{x}$.

- 3/ Montrer que la droite Δ : y=2x est une asymptote à $\left(C_g\right)$ au voisinage de $+\infty$.
- 4/ Etudier la dérivabilité de g à droite en −1. Interpréter le résultat graphiquement.
- 5/ Etudier la dérivabilité de g à gauche en −1. Interpréter le résultat graphiquement.

Exercice n°3: (3 points)

Le plan est muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

On considère les points A et B dont les coordonnées polaires sont A(1,0) et B(1, $\frac{2\pi}{3}$).

On considère également le point C dont les coordonnées cartésiennes sont $C\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$.

- 1/ Préciser, sans justification les coordonnées cartésiennes de A.
- 2/ Déterminer les coordonnées cartésiennes de B.
- 3/ Déterminer les coordonnées polaires de C.
- 4/ Justifier que les points A, B et C sont sur un même cercle dont on précisera le centre et le rayon.
- 5/ Placer, précisément, les points A, B et C dans le repère (O, \vec{i}, \vec{j}) . (Sur la figure 2 de la page 3)
- 6/ Quelle est la nature du triangle ABC ? Justifier.

Exercice n°4: (6 points)

Soit
$$f(x) = \cos(3\pi + x) + 3\cos(-x) + \sin(x + \frac{3\pi}{2}) + \sin(20\pi - x)$$
; $x \in IR$

1/a/Montrer que f(x) = cos x - sin x.

b/ En déduire que f
$$(x) = \sqrt{2} \cos \left(x + \frac{\pi}{4}\right)$$
.

2/ Calculer
$$f\left(\frac{\pi}{3}\right)$$
, en déduire $\cos\left(\frac{7\pi}{12}\right)$.

- 3/ Résoudre, dans IR, puis dans $[0,2\pi[$, l'équation f(x)=1.
- 4/ Résoudre, dans $[0,2\pi[$, l'inéquation $f(x) \ge 1$.

$$5/ \text{ Soit } g(x) = 1 + \cos 2x - \sin 2x$$

a/Montrer que
$$g(x) = 2\sqrt{2} \cos x \cdot \cos \left(x + \frac{\pi}{4}\right)$$

b/Résoudre, dans $[0,2\pi[$, l'inéquation $g(x) \ge 2\cos x$.

http://ymaths.e-monsite.com/

Figure 1:

http://ymaths.e-monsite.com/

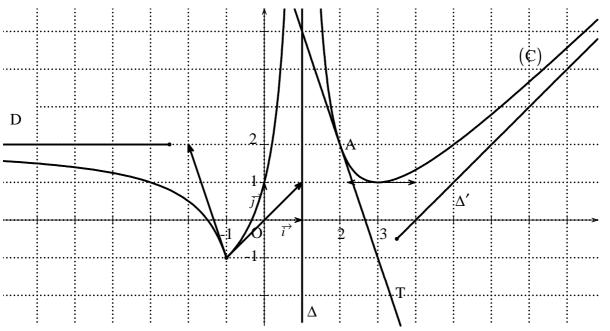
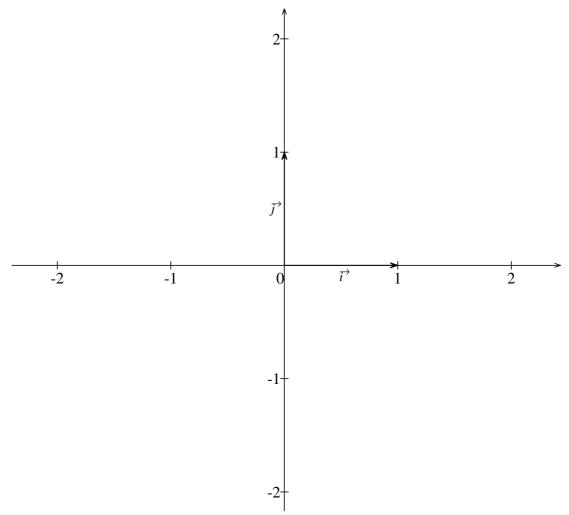


Figure 2



Page 3/3