Lycée: 7 / 11 / Aguereb	Devoir de synthèse n°1	Classe: 3 ^{ème} Sc. Informatiques
Prof : Mr Rekik Sabeur	Le: 12 / 12 / 2008	Durée : 2 Heures

Exercice n°1: (4 points)

Soit (U_n) une suite arithmétique définie sur \mathbb{N} tel que $U_2 + U_3 + U_4 = 15$ et $U_6 = 20$.

1/ Calculer son premier terme U_0 et sa raison r.

2/ Soit la somme
$$S_n = U_0 + U_1 + U_2 + \cdots + U_n$$
 avec $n \in \mathbb{N}$

a/ Montrer que
$$S_n = \frac{5(n+1)(n-4)}{2}$$

b/ Déterminer l'entier naturel n pour lequel $S_n = 35$.

Exercice n°2: (3 points)

Soit f la fonction définie par
$$\begin{cases} f(x) = \frac{\sqrt{1+x} - \sqrt{1-x}}{x} & \text{si } x \neq 0 \\ f(0) = m & (m \in \mathbb{R}) \end{cases}$$

1/ Déterminer l'ensemble de définition D_f de f.

2/ a/ Montrer que pour tout
$$x \in D_f \setminus \{0\}$$
; $f(x) = \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$

b/ Déterminer le réel m pour que f soit continue en 0.

Exercice $n^{\circ}3$: (6 points)

Soit g la fonction définie par
$$g(x) = \begin{cases} x^3 - 2x & \text{si } x < 1 \\ \frac{x - 3}{x + 1} & \text{si } x \ge 1 \end{cases}$$

On désigne par \mathscr{C}_g sa courbe représentative dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ du plan.

- 1/Vérifie que g est définie sur $\mathbb R$.
- 2/ Montrer que g est continue en 1.
- 3/ Déterminer $\lim_{x\to +\infty} g(x)$. Interpréter graphiquement le résultat.
- 4/ Montrer que la courbe \mathscr{C}_g admet une branche parabolique de direction $(O, \overset{\Rightarrow}{j})$ au voisinage de $-\infty$.
- $5/\ a/\ Montrer$ que g est dérivable en 2 et déterminer g'(2) .
 - b/ Ecrire une équation de la tangente T à \mathscr{C}_{g} en son point d'abscisse 2.

Exercice n°4: (7 points)

Soit f la fonction définie sur
$$\mathbb{R} \setminus \{1\}$$
 par $f(x) = \frac{-2x^2 + 3x}{x - 1}$

On désigne par \mathscr{C} sa courbe représentative dans un repère orthonormé du plan.

1/ Déterminer les limites de f aux bornes de son ensemble de définition.

En déduire que la courbe $\mathscr C$ de f admet une asymptote verticale Δ dont on donnera une équation.

2/ a/ Déterminer trois réels a, b et c tels que pour tout
$$x \in \mathbb{R} \setminus \{1\}$$
; $f(x) = ax + b + \frac{c}{x-1}$

b/ En déduire que la droite \mathscr{D} : y = -2x + 1 est une asymptote oblique à \mathscr{C} au voisinage de $+\infty$ et de $-\infty$.

c/ Etudier, suivant les valeurs de x, la position de $\mathscr C$ par rapport à $\mathscr D$.

3/ Montrer que le point $\Omega(1,-1)$ est un centre de symétrie de $\mathscr C$.