Lycée: 7 / 11 / Méthouia	Devoir de synthèse n°3	Classe: 2 ^{ème} Sc 3
Prof : Mr Rekik Sabeur	Le: 29 / 05 / 2008	Durée : 2 Heures

Exercice n°1: (8 Points)

Le plan est muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

On considère les fonctions f et g définies par $f(x) = \frac{2x-4}{x+1}$ et $g(x) = x^2 - 4$

- 1/ a/ Déterminer l'ensemble de définition de f.
 - b/ Soit H la courbe de f. Déterminer le centre de H et ses asymptotes. Tracer H.
 - c/Résoudre graphiquement l'inéquation $f(x) \ge 0$
- 2/ a/ Tracer la courbe \mathscr{C}_{g} de g dans le même repère.
 - b/ Chercher par le calcul les coordonnées des points d'intersection de H avec \mathscr{C}_{σ} .
 - c/Résoudre graphiquement l'inéquation : f(x) < g(x).
- 3/ Soit h la fonction définie par h(x) = $\frac{2|x| 4}{|x| + 1}$
 - a/ Déterminer l'ensemble de définition de h.
 - b/ Montrer que la fonction h est paire.
 - c/ Tracer à partir de H la courbe \mathscr{C}_h de la fonction h. (utiliser autre couleur)
 - d/ Décrire à partir du graphique les variations de h.

Exercice n°2: (8 Points)

Dans un repère orthonormé $(0, \vec{i}, \vec{j})$, on donne : Les points A(-5, -5), B(1, -2) et \mathscr{C}

l'ensemble des points M(x,y) tels que : $x^2 + y^2 - 6x + 4y - 12 = 0$.

- 1/ Montrer que \mathscr{C} est un cercle dont on précisera son centre I et son rayon R.
- 2/a/Vérifier que le point $C(-1,1) \in \mathscr{C}$.
 - b/ Déterminer une équation cartésienne de la droite Δ tangente à \mathscr{C} en C.
- 3/ Montrer que le point A se trouve à l'extérieur du cercle \mathscr{C} et que B se trouve à l'intérieur.
- 4/ a/ Déterminer une équation cartésienne de la droite (AB).
 - b/ La droite (AB) coupe & en deux points E et F. Déterminer les coordonnées des points E et F.
- 5/ a/ Déterminer une équation cartésienne du cercle \mathscr{C}' de centre I'(2,1) et de rayon R'= $\sqrt{5}$.
 - b/ Montrer que la droite (AB) est tangente au cercle \mathscr{C}' .
- 6/ Déterminer les coordonnées des points d'intersection du cercle $\mathscr C$ avec le cercle $\mathscr C'$.

Exercice n°3: (4 Points)

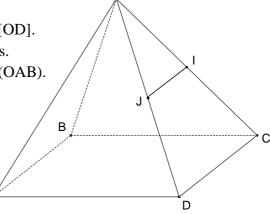
On considère une pyramide de sommet O et de base un parallélogramme ABCD.

On désigne par I et J les milieux respectifs de [OC] et [OD].

1/a/Montrer que les droites (IJ) et (AB) sont parallèles.

b/ En déduire que la droite (IJ) est parallèle au plan (OAB).

- 2/ Soit K le milieu de [OA].
 - a/ Montrer que les plans (IJK) et (ABCD) sont parallèles.
 - b/ Montrer que le plan (IJK) coupe l'arête [OB] en son milieu L.
 - c/ Montrer que le quadrilatère IJKL est un parallélogramme.



0