Mr : Rekik Sabeur

Exercice n°1:

1/ Calculer $I = \int_{1}^{e} \frac{\ln x}{x} dx$

http://ymaths.e-monsite.com/

- 2/ Montrer que pour tout $x \in [1, +\infty[$: $\frac{1}{2x} \le \frac{x}{1+x^2} \le \frac{1}{x}$
- 3/ En déduire un encadrement de l'intégrale $J = \int_{1}^{e} \frac{x \ln x}{1 + x^2} dx$

Exercice n°2:

Soit f et g les fonctions définies sur]0, + ∞ [par $f(x) = x^3 - x - 2 \ln x$ et $g(x) = x + \frac{1}{x} + \frac{\ln x}{x^2}$

- 1/ a/ Montrer que la fonction f est dérivable $]0, +\infty[$ et que $f'(x) = \frac{(x-1)(3x^2+3x+2)}{x}$
 - b/ Etudier les variations de f puis déterminer le signe de f(x).
- 2/a Déterminer les limites de g en 0 et en $+\infty$.
 - b/ Montrer que pour tout x de]0, + ∞ [, $g'(x) = \frac{f(x)}{x^3}$.
 - c/ Dresser le tableau de variations de f.

Exercice n°3:

Soit f la fonction définie sur]-1,+ ∞ [par : $f(x) = \frac{ln(x+1)}{x+1} - x$

On désigne par (C) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1/ Soit g la fonction définie sur $]-1,+\infty[$ par : $g(x)=x^2+2x+ln(x+1)$.
 - a/ Dresser le tableau de variations de g.
 - b/Calculer g(0) et en déduire le signe de g(x) sur $]-1,+\infty[$.
- 2/ a/ Montrer que pour tout $x \in \left]-1,+\infty\right[: f'(x) = -\frac{g(x)}{(x+1)^2}$.
 - b/ Dresser le tableau de variations de f.
 - c/Montrer que la droite D d'équation y = -x est une asymptote à (C) au voisinage de $+\infty$.
 - d/ Etudier la position relative de (C) et D.
 - $e/\operatorname{Tracer}(C)$.
- 3/ Calculer l'aire du domaine du plan du plan limitée par (C), D et les droites d'équations x = 0 et x = 1.

Exercice n°4:

Soit la fonction f définie par $f(x) = ln(x^2 - 3x)$

On désigne par \mathscr{C} sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 1/ Déterminer D_f . Calculer les limites de f aux bornes de D_f .
- 2/ Montrer que la droite Δ : $x = \frac{3}{2}$ est un axe de symétrie de la courbe \mathscr{C} de f.
- 3/ Etudier les variations de f.
- 4/a/ Déterminer la nature des branches infinies de \mathscr{C} .
 - b/ Déterminer les coordonnées des points d'intersection entre $\mathscr C$ et l'axe des abscisses.
 - c/ Tracer la courbe & .

Exercice n°5:

Soit f la fonction définie sur IR par
$$f(x) = \begin{cases} x(2 + \ln^2|x|) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

On désigne par \mathscr{C} sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) . $(||\vec{i}|| = 2 \ cm)$

http://ymaths.e-monsite.com/

- 1/ Montrer que f est paire.
- 2/ Montrer que f est continue en 0.
- 3/ Etudier la dérivabilité de f en 0.
- 4/ Etudier les variations de f.
- 5/ Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter le résultat graphiquement.
- 6/ Construire la courbe $\mathscr C$ et la tangente à $\mathscr C$ au point d'abscisse $\frac{1}{e}$.

Exercice n°6:

Pour tout $n \in IN^*$, on considère l'intégrale $I_n = \int_0^1 x^n ln(x+2) dx$.

- 1/ Vérifier que pour tout $x \in IR_+$: $\frac{x^2}{x+2} = x 2 + \frac{4}{x+2}$ et calculer l'intégrale $I = \int_0^1 \frac{x^2}{x+2} dx$.
- 2/a Calculer I_1 .
 - b/ Montrer que la suite (I_n) est décroissante et en déduire qu'elle est convergente.
 - c/Montrer que pour tout $n \in IN^*$: $0 \le I_n \le \frac{\ln 3}{n+1}$ et en déduire la limite de I_n en $+\infty$.
- 4/ a/ Montrer que pour tout $n \in IN^*$: $\frac{1}{3(n+2)} \le \int_0^1 \frac{x^{n+1}}{x+2} dx \le \frac{1}{2(n+2)}$.
 - b/ Montrer alors que pour tout $n \in IN^*$: $\frac{\ln 3}{n+1} \frac{1}{2(n+1)(n+2)} \le I_n \le \frac{\ln 3}{n+1}$.
 - c/ En déduire la limite de nI_n lorsque n tend vers $+\infty$.

Exercice n°7:

Pour tout $n \in IN^*$ on pose $I_n = \int_1^e \frac{ln^n(x)}{x^2} dx$

- 1/a Montrer que $I_1 = 1 \frac{2}{e}$
 - b/ Montrer que (I_n) est décroissante et en déduire qu'elle est convergente.
- 2/ a/ Montrer que pour tout $n \in IN^*$ et pour tout $x \in [1, e]$ on a : $\frac{ln^n(x)}{xe} \le \frac{ln^n(x)}{x^2} \le \frac{ln^n(x)}{x}$
 - b/ Montrer que pour tout $n \in IN^*$, $\frac{1}{(n+1)e} \le I_n \le \frac{1}{(n+1)}$
 - c/ En déduire la limite de la suite (I_n) .
- 3/ a/ Montrer à l'aide d'une intégration par parties que pour tout $n \in IN^*$, on a : $I_{n+1} = (n+1)I_n \frac{1}{e}$
 - b/ Montrer par récurrence pour tout $n \in IN^*$, on a : $\frac{1}{n!}I_n = 1 \frac{1}{e} \cdot \left(\sum_{p=0}^n \frac{1}{p!}\right)$
 - c/ En déduire $\lim_{n\to+\infty} \left(\sum_{p=0}^{n} \frac{1}{p!} \right)$

http://ymaths.e-monsite.com/