Fonctions de référence

Exercice n°1:

Soit f et g deux fonctions définies

par:
$$f(x) = -\frac{1}{2}x^2 + 2$$
 et $g(x) = \frac{3}{2}x^2$

- 1) Etudier f et tracer la parabole $P = C_f$ dans un repère orthogonal (O, \vec{i}, \vec{j})
- 2) Soit la droite Δ : $y = \frac{1}{2}x 1$.
 - a) Construire la droite Δ dans le même repère.
 - b) Déterminer s'ils existent, par le calcul les coordonnées des points d'intersection de P et Δ .
- 3) a) Tracer la parabole $P' = C_g$ dans le même repère.
 - b) Résoudre graphiquement l'inéquation $f(x) \ge g(x)$
- 4) Soit $P'' = t_{-3\bar{j}}(P)$
 - a) Tracer P".
 - b) Déterminer la fonction h dont la représentation graphique est la parabole P''

Exercice n°2:

Soit la fonction f définie par $f(x) = -\frac{1}{2}(x-2)^2$

- 1) a) Etudier f et tracer sa courbe représentative C_f dans un repère orthonormé (O, \vec{i}, \vec{j}) .
 - b) Résoudre graphiquement : f(x) = -2 puis $f(x) \le -2$
- 2) Soit la fonction g définie par $g(x) = \frac{1}{2}x^2 2$ Tracer la courbe représentative C_g de g dans le même repère.
- 3) a) Déterminer les coordonnées des points d'intersection de C $_{\rm f}$ et de C $_{\rm g}$
 - b) Résoudre graphiquement l'inéquation : $(x-2)^2 \le -x^2 + 4$

Exercice n°3:

Soit f la fonction définie par $f(x) = 3 - x^2$

- 1) Etudier f et tracer sa courbe représentative C dans un repère orthonormé (O, \vec{i}, \vec{j})
- 2) Soit D la droite d'équation y = 2 x
 - a) Construire la droite D dans le même repère.

- b) Résoudre graphiquement l'équation $-x^2 2x + 3 = 0$ puis l'inéquation $-x^2 2x + 3 \le 0$
- 3) Déduire à partir de C la courbe C ' de g définie sur IR par g(x) = |f(x)|

Exercice n°4:

Soit la fonction f définie par $f(x) = (x-1)^2$

- 1) a) Etudier les variations de f sur chacun des intervalles $]-\infty,1]$ et $[1,+\infty[$.
 - b) Construire la courbe représentative C_f de f dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$.
- 2) Soit la fonction g définie par $g(x) = x^2 2x$
 - a) Vérifier que g(x) = f(x) 1
 - b) Tracer C_g à partir de C_f .
- 3) Soit la fonction h définie par $h(x) = x^2 2|x|$
 - a) Montrer que h est paire.
 - b) Tracer C_h.
 - c) En déduire le tableau de variation de h.
- 4) Déterminer graphiquement, selon les valeurs du paramètre réel m, le nombre de solutions de l'équation h(x) = m.

Exercice n°5:

Soit la fonction f définie par $f(x) = -\frac{1}{2}(x+2)^2$

- 1) Tracer \mathscr{C}_f dans un repère orthonormé (O, \vec{i}, \vec{j})
- 2) Soit la fonction g définie sur $\ensuremath{\mathbb{R}}$ par :

$$g(x) = a x^2 + b x + c$$

a) Déterminer les réels a, b et c sachant que \mathscr{C}_g passe par les points

$$A(2,-5)$$
, $B(1,-\frac{3}{2})$ et $C(0,1)$

b) Montrer que g(x) = f(x) + 3 puis tracer \mathcal{C}_g .