Rekik Sabeur 4ième Math

Fonctions primitives

✓ Primitives de fonctions usuelles

F est la primitive de f sur l'intervalle I et c est un réel.

$f: x \mapsto$	$F: x \mapsto$	I =
a	ax + c	\mathbb{R}
x^n ; $n \in IN^*$	$\frac{x^{n+1}}{n+1} + c$	\mathbb{R}
$\frac{1}{x^{n}}; n \in IN \setminus \{0, 1\}$	$\frac{-1}{\left(n-1\right)x^{n-1}}+c$	$]0,+\infty[(ou]-\infty,0[)$
\sqrt{x}	$\frac{2}{3}x\sqrt{x}+c$	[0,+∞[
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + c$]0,+∞[
cos x	sin x + c	\mathbb{R}
sin x	$-\cos x + c$	\mathbb{R}
$\cos(ax+b)$; $a \neq 0$	$\frac{1}{a}\sin(ax+b)+c$	\mathbb{R}
$\sin(ax+b)$; $a \neq 0$	$-\frac{1}{a}\cos(ax+b)+c$	\mathbb{R}
$1 + \tan^2 x$	tan x + c	$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[; k \in \mathbb{Z}$

√ Calcul de primitives

u et v deux fonctions dérivables sur un intervalles I et F une primitive de f sur I.

f	F	Condition
$u'u^n$, $n \in IN^*$	$\frac{\mathbf{u}^{n+1}}{n+1} + \mathbf{c}$	
u'v+uv'	u.v	
$\frac{\mathbf{u'}}{\mathbf{u}^{n}}; n \in IN \setminus \{0,1\}$	$\frac{-1}{(n-1)u^{n-1}}+c$	u ne s'annule pas sur I
$\frac{\mathbf{u'v} - \mathbf{uv'}}{\mathbf{v}^2}$	$\frac{\mathbf{u}}{\mathbf{v}} + \mathbf{c}$	v ne s'annule pas sur I
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u} + c$	u strictement positive sur I
u′√u	$\frac{2}{3}u\sqrt{u}+c$	u positive sur I
$u'\sqrt[n]{u^{1-n}}$, $n \in IN \setminus \{0,1\}$	n ⁿ √u + c	u est strictement positive sur I
$u'(w' \circ u)$	$\mathbf{w} \circ \mathbf{u} + \mathbf{c}$	w une fonction dérivable sur u(I)