RÉPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION

EXAMEN DU BACCALAUREAT - SESSION DE JUIN 2010

SECTION: SCIENCES EXPERIMENTALES

EPREUVE: MATHEMATIQUES DUREE: 3h

COEFFICIENT: 3

Le sujet comporte 3 pages numérotées de 1/3 à 3/3

Exercice 1 (3 points)

Répondre par vrai ou faux à chacune des propositions suivantes. Aucune justification n'est demandée.

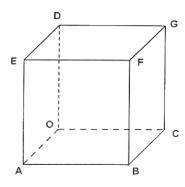
- 1) Si u et v sont deux racines cinquième de l'unité, alors u.v est aussi une racine cinquième de l'unité.
- 2) $1 + i\sqrt{2009}$ est une solution dans \mathbb{C} de l'équation $z^2 2z + 2010 = 0$.
- 3) Un argument du nombre complexe $z = -5e^{\frac{i\pi}{6}}$ est $-\frac{\pi}{6}$.
- 4) Dans le plan complexe muni d'un repère orthonormé direct (O, \dot{u}, \dot{v}) , l'ensemble des points M d'affixe z tels que $z = 3 e^{i\theta}$, où θ décrit l'intervalle $[o, \pi]$, est un demi-cercle.

Exercice 2 (6 points)

Dans la figure ci-contre OABCDEFG est un cube d'arête 1.

On munit l'espace du repère orthonormé direct (O, OA, OC, OD).

- a) Déterminer les composantes du vecteur AC ∧ AD.
 - b) En déduire qu'une équation cartésienne du plan (ACD) est x + y + z -1=0.
- 2) Soit Δ la droite passant par O et perpendiculaire au plan (ACD)
 - a) Donner une représentation paramétrique de la droite Δ .
 - b) Déterminer les coordonnées du point H, intersection de Δ et du plan (ACD).
- 3) Pour tout réel m, on désigne par S_m l'ensemble des points M (x, y, z) de l'espace tels que : $x^2 + y^2 + z^2 2mx 2my 2mz 1 + 3m^2 = 0$
 - a) Montrer que pour tout réel m, S_m est une sphère dont on précisera le centre I_m et le rayon r.
 - b) Déterminer les valeurs de m pour lesquelles S_m passe par le point A.
- 4) a) Vérifier que les centres des sphères S_0 et S_2 sont deux points de la droite Δ .
 - b) Justifier que le plan (ACD) coupe les deux sphères S_0 et S_2 suivant un même cercle qu'on précisera .



Exercice 3 (6 points)

Dans l'annexe ci-jointe est représentée dans un repère orthonormé (O, i, j), la courbe (\mathscr{C}) d'une fonction f définie, dérivable et strictement croissante sur]-1 , 1 [. Les droites (Δ) et (Δ') d'équations respectives x = -1 et x = 1 sont les asymptotes à (\mathscr{C}) . La droite (T) est la tangente à (\mathscr{C}) en O.

- 1) En utilisant le graphique déterminer f(0) et f'(0).
- 2) Soit g la fonction réciproque de f et (\mathscr{C}') sa courbe représentative dans le repère (O, \vec{i}, \vec{j}) .
 - a) Déterminer g(0) et g'(0).
 - b) Tracer la courbe (%').
- 3) Sachant que l'expression de g est de la forme $g(x) = \frac{e^x + a}{e^x + b}$, montrer en utilisant ce qui précède que $g(x) = \frac{e^x 1}{e^x + 1}$, pour tout $x \in \mathbb{R}$.
- 4) a) Vérifier que $\frac{1}{e^x + 1} = \frac{e^{-x}}{e^{-x} + 1}$ pour tout $x \in IR$.
 - b) Calculer alors $\int_0^1 g(x)dx$.
- 5) Soit \mathscr{A} l'aire de la partie du plan limitée par les courbes (\mathscr{C}) et (\mathscr{C} ') et les droites d'équations x = 1 et y = 1.
 - a) Montrer que $\mathcal{A} = 1 2 \int_0^1 g(x) dx$.
 - b) En déduire A

Exercice 4 (5 points)

On considère les suites réelles (u_n) et (v_n) définies par :

 u_0 = 1 ; v_0 = 2 et, pour tout entier naturel n, u_{n+1} = α u_n + $(1-\alpha)$ v_n et v_{n+1} = $(1-\alpha)$ u_n + α v_n où α est un réel donné tel que $\frac{1}{2}$ < α < 1 .

- 1) Soit (t_n) la suite définie sur $\mathbb N$ par $t_n = v_n u_n$.
 - a) Calculer to et t1
 - b) Montrer que, pour tout entier naturel n, $t_n = (2\alpha 1)^n$.
 - c) En déduire la limite de t_n.
- 2) a) Montrer que, pour tout entier naturel n, $u_n \leq v_n$
 - b) Montrer que la suite (u_n) est croissante et que la suite (v_n) est décroissante.
 - c) En déduire que les suites (u_n) et (v_n) convergent vers une même limite ℓ .
 - d) Montrer que, pour tout entier naturel n, $u_n + v_n = 3$ et en déduire la valeur de la limite ℓ .

ANNEXE A RENDRE AVEC LA COPIE

