Série Produit scalaire

Exercice n°1:

EFGH est un rectangle, avec EH = a et $EF = \frac{3}{2}a$; M est le milieu de [FG] et K est défini par

 $\overrightarrow{HK} = \frac{1}{3}\overrightarrow{HG}$; L est le projeté orthogonal de K sur (EM).

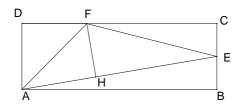
- 1. Calculer, en fonction de a, les produits scalaires : $\overrightarrow{\mathit{EF}}.\overrightarrow{\mathit{EM}}$ et $\overrightarrow{\mathit{EH}}.\overrightarrow{\mathit{KE}}$.
- 2. En utilisant des relations de Chasles, montrer que $\overrightarrow{EK}.\overrightarrow{EM} = \frac{5a^2}{4}$.
- 3. En exprimant d'une autre façon le produit scalaire $\overline{EK}.\overline{EM}$, en déduire la distance EL en fonction de a.
- 4. Déterminer une mesure en degrés de l'angle \widehat{KEM} .

Exercice n°2:

Soient A et B deux points du plan tels que AB = 5.

- 1. Construire C défini par $\overrightarrow{AB}.\overrightarrow{AC} = 10$ et AC = 4.
- 2. Placer le barycentre D de (A, 12) et (B, -7) ainsi que le barycentre E de (A, 1) et (C, -3).
- 3. Calculer les produits scalaires $\overrightarrow{AB.AD}$ $\overrightarrow{AC.AE}$ et $\overrightarrow{AD.AE}$. En déduire le produit scalaire \overrightarrow{CD} . \overrightarrow{BE} . Que représente la droite (DC) pour le triangle BED?

Exercice n°3:



Soit ABCD un rectangle tel que AB = 6 cm et AD = 2 cm; E est le milieu de [BC] et E défini par $\overline{DF} = \frac{1}{3}\overline{DC}$; E est le projeté orthogonal de E sur E sur E est le milieu de E est le milieu

1. En utilisant les égalités $\overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DF}$ et $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE}$, calculer $\overrightarrow{AF} \cdot \overrightarrow{AE}$.

On détaillera et justifiera toutes les étapes du raisonnement.

- 2. Pour la suite de l'exercice, on admet que $\overrightarrow{AF} \cdot \overrightarrow{AE} = 14$.
 - a. En calculant d'une autre manière le produit scalaire, déterminer la longueur AH.
 - b. En calculant d'une autre manière le produit scalaire, déterminer $\cos(\widehat{EAF})$.
- 3. Soit I le milieu de [FE] et G le centre de gravité du triangle AEF.
 - a. Montrer que $\overrightarrow{AG} = \frac{1}{3}(\overrightarrow{AE} + \overrightarrow{AF})$.
 - b. En déduire la longueur AG.

Exercice n°4:

Dans le repère orthonormé $(o; \vec{i}, \vec{j})$ on considère les points A(-1; 2), B(0; -3) et C(3; 1).

Un graphique complet, montrant l'ensemble de l'exercice sera réalisé.

- 1. a. Déterminer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
 - b. Calculer les longueurs *AB*, *AC* et *BC*.
 - c. En déduire une valeur approchée au degré près de l'angle \widehat{ACB} .
- 2. Calculer $\overrightarrow{CA}.\overrightarrow{CB}$ puis $\overrightarrow{CH}.\overrightarrow{CB}$ où H est le pied de la hauteur issue de A, dans le triangle ABC.
- 3. a. Citer un vecteur normal de la hauteur (AH).
 - b. Déterminer une équation de (AH).
- 4. a. Déterminer les coordonnées de G, centre de gravité du triangle ABC.
 - b. G est-il un point de (AH)?
- 5. a. Déterminer les coordonnées du point *D* tel que *ACDB* soit un parallélogramme.
 - b. Déterminer l'ensemble des points M du plan $\|\overrightarrow{MC} + \overrightarrow{MB}\| = \frac{1}{2}AD$.